
103

1. Introduction

An efficient algorithm that guides our builders’ every move.

With a united front, we present the key features, algorithmic

approach, and potential future enhancements that define our

algorithm.

2. Key features

Building Strategy: One of our primary strategies involves

identifying key locations to build Walls that can lead to the

highest scores.

Destroying Strategy: The "Destroy" strategy is carefully

integrated into our builder action plan.

Strategic Action Prioritization: Our algorithm empowers us with

the ability to prioritize actions based on strategic importance.

Whether it's building structures, making calculated movements,

or dismantling enemy defences, our algorithm chooses actions

that maximize our potential score.

3. Algorithm approach

Shortest Path Calculation: Leveraging sophisticated pathfinding

algorithms like Dijkstra's, we calculate the most efficient routes

for our builders to traverse the terrain.

Dynamic Score Evaluation: Through simulations and

computations, we predict potential scores for different action

sequences.

Strategic Building and Elimination: Our algorithm strikes a

balance between building structures for long-term gains and

strategically eliminating rival structures.

4. Future enhancement

Our team foresee these enhancements to refine our algorithm's

capabilities: Reduce time complexity, Predict opponent’s move.

1. Introduction

Our software is created to help team players by providing an

overview of the game status, suggesting craftsman movement,

and facilitating communication with the API server. The

software is built using Processing, which is a Java-based

programming language and development platform.

2. Overview of the Development:

Our team has developed a range of tools that help teammates

determine the most effective game strategy. The system can be

divided into two main parts: the user interface and algorithm.

2.1 User interface:

We have developed a user-friendly interface that enables the

team to effectively interact with the software during the game.

The interface displays important information, such as the castle,

walls, territory, and craftsman status, and provides real-time

feedback to the team. Additionally, the system includes an

algorithm that provides recommendations for craftsman

movement. Furthermore, the system handles authentication,

errors, and exceptions appropriately when making API requests.

It ensures that the software adheres to the specifications.

2.2 Algorithm Overview:

The software consists of two algorithms to assist team players.

1. Decision-Making: Algorithms that can analyze the current

game state and suggest optimal moves for each craftsman

movement.

2. Castle Control: Algorithms that focus on castle control and

defense. The software can suggest the best craftsman movement

to protect the castles, build and destroy walls, allocate craftsman

efficiently, and prioritize castle capturing or defense based on the

current game situation.

58 CoreMind モンゴル
科技大

Gal-Erdene Chinbat
Ulambayar Luvsanjargal
Khuder Altangerel（教員）

57 VTC 香港
VTC

Lau Wing Yin
Chau Ka Tai
Lam Long Hei Jason
Choy Shu Sang（教員）

競
技
部
門

1. Problem:
The problem was a board game that takes points by seizing
territories by building walls, playing between two players.
Because of that, we explored a few ways that are written down
below.

2. Exploration:
We tried Brute force methods like minimax and encountered
issues in large-state space games due to the exponential growth
of possibilities. These methods exhaustively search through all
potential moves, becoming impractical for games with complex
branching and deep states. So it’s not compatible in our case.
After that, we studied AI.

3. Why Reinforcement Learning from all other AI learning
methods?
Reinforcement Learning (RL) is well–suited for board games
due to its ability to learn strategies through interactions. Unlike
supervised learning, which lacks feasible labeled data, and
unsupervised learning, which lacks feedback, RL navigates
game challenges.

4. Why Monte Carlo Tree Search for Board Games like ours
(from all other RL algorithms)?
Monte Carlo Tree Search (MCTS) is favored for board games
due to its balanced exploration-exploitation strategy, adaptability
to partial information, simulation-driven decision-making,
iterative improvement, and suitability for sequential gameplay.
Unlike other RL algorithms, MCTS excels in complex game
scenarios where long-term strategy, uncertainty, and dynamic
decision sequences are pivotal, making it a powerful tool for
mastering various board games.

5.Main learning algorithm: Self-Play + Monte Carlo Tree
Search + Deep Neural Network
In self-play with MCTS and deep neural networks, agents learn
by competing against each other. MCTS guides decision-making
based on simulations, and deep neural networks estimate values
and policies. Through iterations of self-play, agents improve
their strategies, making this approach effective for mastering
complex board games.

6. Tools and environment
Language: Python, C++,
Deep Learning Frameworks: TensorFlow, PyTorch
RL Libraries: OpenAI Gym, Stable Baseline
Simulators and Environments: We made our game in
Python using pygame library, and Jupyter notebook

56 Silver 新モンゴル
高専

Bilguuntushig Amarsaikhan
Dulguun Zolzaya
Shur-Erdene Buyannemekh（教員）

