
1. Introduction

Our software is created to help team players by providing an 

overview of the game status, suggesting craftsman movement, 

and facilitating communication with the API server. The 

software is built using Processing, which is a Java-based 

programming language and development platform. 

2. Overview of the Development:

Our team has developed a range of tools that help teammates 

determine the most effective game strategy. The system can be 

divided into two main parts: the user interface and algorithm. 

2.1 User interface: 

We have developed a user-friendly interface that enables the 

team to effectively interact with the software during the game. 

The interface displays important information, such as the castle, 

walls, territory, and craftsman status, and provides real-time 

feedback to the team. Additionally, the system includes an 

algorithm that provides recommendations for craftsman 

movement. Furthermore, the system handles authentication, 

errors, and exceptions appropriately when making API requests. 

It ensures that the software adheres to the specifications. 

2.2 Algorithm Overview: 

The software consists of two algorithms to assist team players. 

1. Decision-Making: Algorithms that can analyze the current

game state and suggest optimal moves for each craftsman

movement.

2. Castle Control: Algorithms that focus on castle control and

defense. The software can suggest the best craftsman movement

to protect the castles, build and destroy walls, allocate craftsman

efficiently, and prioritize castle capturing or defense based on the

current game situation.

57 VTC 香港
VTC

Lau Wing Yin
Chau Ka Tai
Lam Long Hei Jason
Choy Shu Sang（教員）

102

1. Problem:
The problem was a board game that takes points by seizing
territories by building walls, playing between two players. 
Because of that, we explored a few ways that are written down
below.

2. Exploration:
We tried Brute force methods like minimax and encountered
issues in large-state space games due to the exponential growth
of possibilities. These methods exhaustively search through all
potential moves, becoming impractical for games with complex
branching and deep states. So it’s not compatible in our case.
After that, we studied AI.

3. Why Reinforcement Learning from all other AI learning
methods?
Reinforcement Learning (RL) is well–suited for board games
due to its ability to learn strategies through interactions. Unlike
supervised learning, which lacks feasible labeled data, and
unsupervised learning, which lacks feedback, RL navigates
game challenges.

4. Why Monte Carlo Tree Search for Board Games like ours
(from all other RL algorithms)?
Monte Carlo Tree Search (MCTS) is favored for board games
due to its balanced exploration-exploitation strategy, adaptability
to partial information, simulation-driven decision-making,
iterative improvement, and suitability for sequential gameplay.
Unlike other RL algorithms, MCTS excels in complex game
scenarios where long-term strategy, uncertainty, and dynamic
decision sequences are pivotal, making it a powerful tool for 
mastering various board games. 

5.Main learning algorithm: Self-Play + Monte Carlo Tree
Search + Deep Neural Network
In self-play with MCTS and deep neural networks, agents learn 
by competing against each other. MCTS guides decision-making
based on simulations, and deep neural networks estimate values
and policies. Through iterations of self-play, agents improve
their strategies, making this approach effective for mastering
complex board games.

6. Tools and environment
Language: Python, C++, 
Deep Learning Frameworks: TensorFlow, PyTorch
RL Libraries: OpenAI Gym, Stable Baseline
Simulators and Environments: We made our game in
Python using pygame library, and Jupyter notebook

アルゴリズム

アルゴリズムは大きく分けて２つになります。まず試合

一覧取得 で職人が現在いる領域を調査します。その次

に職人の優先順位に従って、可能な行動を選択します。

具体的な職人の優先順位の例として、以下を考えていま

す。 ・職人の近くに敵の職人がいない場合は城壁の見直

を優先し、自陣営の陣地を確保する ・職人のいる領域が

敵の陣地で自陣営の陣地ができあがっているのであれば、

解体を優先し、敵の城壁を取り除いて陣地の完成を妨害し

ます。

や について

フィールドの様子がわかるように作成します。 職人の

行動や座標もわかるように表示し、職人の行動を指定する

ボタンを配置します。 職人の行動には決められた座標や

方向への移動、移動しながら城壁を作成するかどうか、敵

の城壁や職人にどう対応するかを入力できるようにしま

す。 次に作成中の を示します。

開発環境

：

言語

56 Silver 新モンゴル
高専

Bilguuntushig Amarsaikhan
Dulguun Zolzaya
Shur-Erdene Buyannemekh（教員）

55 カラクリと片栗粉 新居浜 中家 海翔（２年）　西元 銀弥（２年）
久保 仁志（２年）　占部 弘治（教員）

競
技
部
門


