BIRDLOCK 養殖魚用食害対策システム

鳥羽商船

塚本真己也(4年) 北仲悠人(4年) 小林 栄太 (3年) 橋爪 天聖 (4年)

濱口 雅斗(2年) 江崎 修央(教員)

1. はじめに

日本では、川や池でアユやアマゴなどの魚を養殖す る内水面養殖が盛んに行われています。しかし近年、 カワウなどの鳥類による食害が深刻化し、養殖業者に 大きな被害をもたらしています。そこで私たちは、AI による食害鳥の検出と放水による追い払いを実現する システム「BIRDLOCK」を提案します。

2. システム概要

「BIRDLOCK」は、養殖場に設置した PT カメラから 得られる画像に対して AI で食害鳥を検出し、二軸 PT 機構により方向を定め、放水装置によって鳥の追い払 いを実現します。さらに追い払いの動作記録をクラウ ドに保存し、LINE Bot を通じて養殖業者に通知しま す。これにより、食害鳥の追い払いによる被害削減を 実現します。

図1 システム概要

3. 機能

3.1 食害鳥の検出

養殖場に設置した PT カメラで定期的に画像を取得 し、食害鳥を学習させた YOLOv8 モデルで識別します。 この識別モデルは、食害鳥のみを学習しており、識別 スコアが高い場合に食害鳥と判断して放水を実施し、 追い払いを実現します。一方で、天然記念物などの鳥 はスコアが低くなるため、閾値以下の場合は放水を行 わないようにしてあります。さらに、安全性を確保す るため、人を検知した場合は動作しません。

図2 鳥類の検出結果とスコア

3.2 食害鳥の追い払い

鳥が検出されると放水装置の制御を開始します。

カメラで取得した画像から 鳥までの距離と角度を計算 し、二軸 PT 機構を用いて水の 発射角を調整します。調整 後、電磁弁を通じて水を放出 し、噴射を開始します。鳥が カメラで検出されなくなる と、動作を終了する仕組みに なっています。

図3 放水装置

3.3 記録·通知

追い払いの記録として自動 的に録画が開始されます。追い 払いが終了すると、映像はクラ ウドに保存され、LINE Bot を 通じて養殖業者に追い払い映 像が通知されます。これによ り、本システムによる追い払い の効果を確認できます。

図4 LINE 通知

4. おわりに

本システムの利用により、養殖場の持続的な維持管 理を効果的に実現させます。食害被害の軽減により、 生産の安定化を図り、養殖業者の収益を向上させます。